STRINGED INSTRUMENT RESONANCE SYSTEM

US 2019 295 513A1

drawing #0

Show all 6 drawings

A stringed instrument, such as a semi-acoustic electric guitar, can employ a resonance system that consists of a body having at least one internal cavity accessed by a soundhole continuously extending from a top cover. The soundhole may have a continuously curvilinear transition from the top cover and a length corresponding with an altered resonance frequency of the instrument body.

PatentSwarm provides a collaborative workspace to search, highlight, annotate, and monitor patent data.

Start free trial Sign in

Tip: Select text to highlight, annotate, search, or share the selection.

Claims

1. An apparatus comprising:
an instrument body defining at least one internal cavity; and
a soundhole attached to a soundhole rim of the instrument body via a notch in a top cover of the instrument body, the soundhole having a continuously linear sidewall and a continuously curvilinear sidewall extending a length into the instrument body to provide an altered resonance frequency of the instrument body.

Show 10 dependent claims

12. A guitar comprising:
an instrument body defining at least one internal cavity;
a soundhole attached to a soundhole rim of the instrument body via a notch in a top cover of the instrument body, the soundhole having a first sidewall shape defined by a first continuously linear sidewall and a first continuously curvilinear sidewall extending a length into the instrument body to provide an altered resonance frequency of the instrument body; and
an insert attached to the soundhole, the insert having a second sidewall shape defined by a second continuously linear sidewall and a second continuously curvilinear sidewall, the first sidewall shape being different than the second sidewall shape.

Show 6 dependent claims

19. An apparatus comprising:
an instrument body defining at least one internal cavity; and
a soundhole attached to a soundhole rim of the instrument body via a seam in a top cover of the instrument body, the soundhole having a continuously linear sidewall and a continuously curvilinear sidewall extending a length into the instrument body to provide an altered resonance frequency of the instrument body.

Show dependent claim

Description

The present application is a continuation of U.S. patent application Ser. No. 15/925,168 filed Mar. 19, 2018, the contents of which are hereby incorporated by reference.

SUMMARY

A resonance system, in accordance with assorted embodiments, has an instrument body having at least one internal cavity accessed by a soundhole continuously extending from a top cover. The soundhole has a continuously curvilinear transition from the top cover and a length corresponding with an altered resonance frequency of the instrument body.

In other embodiments, a resonance system has a body having a single internal cavity accessed by a soundhole continuously extending from a top cover. The soundhole has a continuously curvilinear transition from the top cover and a length corresponding with an altered resonance frequency of the body.

A stringed instrument resonance system, in some embodiments, is utilized by providing an instrument body having a single internal cavity accessed by at least one soundhole continuously extending from a top cover with the soundhole having a continuously curvilinear transition from the top cover and a length corresponding with a first altered resonance frequency of the instrument body. The soundhole is changed to produce a second altered resonance frequency of the instrument body.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 displays a block representation of an example stringed instrument assembly that may be employed in accordance with various embodiments.

FIGS. 2A & 2B respectively represent portions of an example stringed instrument that may be employed by the stringed instrument assembly of FIG. 1.

FIGS. 3A-3D respectively depict line representations of portions of an example stringed instrument resonance system configured in accordance with some embodiments.

FIG. 4 is a cross-sectional representation of a portion of an example stringed instrument resonance system arranged in accordance with various embodiments.

FIG. 5 conveys a cross-sectional representation of a portion of an example stringed instrument resonance system utilized in accordance with assorted embodiments.

FIG. 6 illustrates a line representation of portions of an example stringed instrument resonance system that may be employed in accordance with various embodiments.

FIG. 7 shows an example resonance optimization routine that can be carried out with the assorted embodiments of FIGS. 1-6.

DETAILED DESCRIPTION

The present disclosure generally relates to a resonance system for a stringed instrument that can optimize the acoustic properties of an irregularly shaped instrument body.

A stringed instrument has been tied to a particular tonality and resonant frequency range based on the size and shape of the instrument's body. Instrument bodies with symmetric shapes, relatively large internal volumes, and/or relatively light physical bracing can have robust frequency ranges with clear tone. For example, a violin, cello, and acoustic guitar each employ relatively large internal volumes that are utilized to provide smooth and clear reproduction of a range of different frequencies.

While such stringed instruments can provide tonal quality, acoustic amplitude and volume can be difficult unless the instrument is played in a location with optimal acoustic properties, such as a concert hall. The use of acoustic transducers can allow sounds produced from a stringed instrument to be amplified, manipulated, and recorded, but often with acoustic degradation due to the limitations of the acoustic transducer and the transducer location on the instrument.

In contrast to stringed instruments that are acoustic in nature, an instrument can be configured to optimize acoustic transducer placement and performance with respect to vibrating strings. Such electric stringed instruments can accurately reproduce relatively large frequency ranges and easily add signal manipulations, such as tone and volume, when plugged into a signal processor. However, an electric stringed instrument can have limited acoustic properties due, at least in part, to priority placement of acoustic transducer(s) and extensive physical bracing that presents an irregularly shaped internal cavity with limited volume.

Accordingly, various embodiments are directed to a resonance system for a stringed instrument that optimizes frequency response and tonality by changing at least one resonance frequency of the instrument's body. By providing one or more soundholes that reverse the acoustic phase of waves from the inside the instrument's body, an electric stringed instrument can have improved acoustic depth, quality, tonality, and amplitude when not connected to a signal processor. The ability to tune a soundhole of an electric stringed instrument allows a diverse variety of audible frequencies to be optimized despite an irregular shaped internal instrument cavity with relatively small volume.

FIG. 1 displays a block representation of an example stringed instrument assembly 100 in which assorted embodiments of the present disclosure can be practiced. The stringed instrument assembly 100 can have any number of stringed instruments 102 that are individually, and/or collectively connected to one or more signal processors 104. As a non-limiting example, multiple different stringed instruments 102, such as a six-string guitar and a four-string bass, can each be connected to different signal processors 104, such as a foot pedal, while each being connected to a common signal processor 104, such as a sound board, amplifier, or pre-amp, via one or more connections 106, such as a wired and/or wireless signal pathway.

A stringed instrument 102 is not limited to a particular size, shape, type, sound characterization, or material construction, but can in some embodiments be guitar defined at least by a body 108 affixed to a neck 110. One or more strings 112, such as metal, nylon, or other acoustic material, can continuously extend from a headstock 114 to a bridge 116 across the neck 110 and portions of the body 108. Articulation of at least one string 112 produces a predetermined tone and frequency range that can be enhanced by the body 108, signal processor 104, or both. For instance, an acoustic guitar can have no electronic transducing means and rely on the body 108 to reverberate sound generated by the string(s) 112 while an electric guitar can have minimal acoustic chamber in the body 108 and rely on one or more active or passive electronic transducing means, such as a wound coil pickup, humbucking pickup, and piezo pickup.

While an acoustic guitar can be outfitted with electronic transducing means, the string vibration dynamics of a hollow body 108 are different than the solid body 108 often found on electric guitars. Hence, a hollow body electric guitar, which may be characterized as a semi-acoustic guitar, attempts to provide conventional electric guitar string 112 dynamics with acoustic (unplugged) tonality that more closely resembles acoustic guitar sound properties. In yet, modifying an electric guitar to be more similar to an acoustic guitar is much more difficult than modifying an acoustic guitar to be more similar to an electric guitar due to the interior cavity of the body 108 playing such a critical role in producing rich, deep, and smooth acoustic tonality.

FIGS. 2A and 2B respectively provide line representations of various portions of an example stringed instrument 120 in which assorted embodiments can be employed. FIG. 2A displays a cut-away perspective of a guitar body 108 and neck 110 without a top cover 122 where a bridge 116 is mounted. The body 108 can be any shape, size, and material construction as part of an electric guitar, but is considered a hollow body electric/semi-acoustic guitar with a relatively thin profile, such as 1.75 or less along the Z axis, a relatively small internal cavity 124 volume, such as 200 cubic inches or less, and internal features 126 for mounting electronics, such as knobs, batteries, circuitry, and pickups.

It is noted that a solid body electric guitar would differ from the body 108 of FIG. 2A by having no acoustically appreciable internal cavity 124 that enhances the acoustic properties of the vibrating strings 112. In contrast, an acoustic guitar would differ from the body 108 of FIG. 2A by having a larger internal cavity 124 that has a shape conducive to enhancing the acoustic properties of the vibrating strings 112. An acoustic guitar would additionally have physical bracing within the cavity 124 to support a top cover while an electric guitar has ample body structure without bracing to support a top cover 122 and aggressive manipulation of the strings 112.

FIG. 2B displays the stringed instrument 120 fully assembled and ready to play music with the top cover 122 installed and strings tuned to a predetermined tension across one or more pickups 128. To take advantage of the volume of air occupying the internal cavity 124, one or more shaped ports, such as the c hole 130 and/or f hole 132, can allow air to flow into, and out of, the body 108 to enhance and alter the acoustic properties of the vibrating strings 112. That is, sound waves and air translating through the internal cavity 124 from the strings 112 create harmonics at various different frequencies that would otherwise not be produced by the strings alone, but could be detected by a pickup 128 to allow for signal manipulation and playback via one or more signal processors 104.

While the addition of internal cavities and one or more sound ports 130/132 can provide some increased acoustic properties, the irregular shape, as defined as a non-symmetric shape in the X-Y plane, and internal features 126 degrades acoustic performance of the instrument 120. Hence, there is a general interest in optimizing the acoustic performance of stringed instruments with irregular shaped internal cavities, particularly internal cavities with volumes that are too small to provide resonance in the internal cavity at lower frequencies, such as less than 500 Hz.

FIGS. 3A-3D respectively illustrate portions of an example stringed instrument 140 that is configured in accordance with some embodiments to provide optimized acoustic properties in a semi-hollow/hollow body electric guitar. The top view of FIG. 3A shows how the neck 110 extends from the body 108 and supports strings 112, along with a bridge 116, over a soundhole 142 and pickups 128. It is contemplated that the number, type, and location of pickups 128 can be altered, without limitation or detriment to the novel aspects of the present disclosure.

PatentSwarm provides a collaborative workspace to search, highlight, annotate, and monitor patent data.

Start free trial Sign in