Co-60 Breeding Reactor Tandem with Thermionic Avalanche Cell

US 2019 287 687A1

drawing #0

Show all 6 drawings

Systems, methods, and devices of the various embodiments enable a Nuclear Thermionic Avalanche Cell (NTAC) to capture gamma ray photons emitted during a fission process, such as a fission process of Uranium-235 (U-235), and to breed and use a new gamma ray source to increase an overall emission flux of gamma ray photons. Various embodiments combine a fission process with the production of Co-60, thereby boosting the output flux of gamma ray photons for use by a NTAC in generating power. Various embodiments combine a fission process with the production of Co-60, a NTAC generating avalanche cell power, and a thermoelectric generator generating thermoelectric power.

PatentSwarm provides a collaborative workspace to search, highlight, annotate, and monitor patent data.

Start free trial Sign in

Tip: Select text to highlight, annotate, search, or share the selection.

Claims

1. A fission process reactor unit, comprising:
a radioactive element;
a cobalt 59 (Co-59) layer;
a Nuclear Thermionic Avalanche Cell (NTAC); and
a thermoelectric generator,
wherein:
a fission process of the radioactive element releases neutrons to the Co-59 layer to breed cobalt 60 (Co-60);
the NTAC receives gamma rays from the fission process, a by-product of the fission process, and the bred Co-60 to generate direct current (DC) power; and
the thermoelectric generator receives thermal energy from the radioactive element and the NTAC to generate DC power.

Show 7 dependent claims

9. A reactor system, comprising:
a containment vessel; and
one or more fission process reactor units supported within the containment vessel, each of the one or more fission process reactor units comprising:
a radioactive element;
a cobalt 59 (Co-59) layer;
a Nuclear Thermionic Avalanche Cell (NTAC); and
a thermoelectric generator,
wherein:
a fission process of the radioactive element releases neutrons to the Co-59 layer to breed cobalt 60 (Co-60);
the NTAC receives gamma rays from the fission process, a by-product of the fission process, and the bred Co-60 to generate direct current (DC) power; and
the thermoelectric generator receives thermal energy from the radioactive element and the NTAC to generate DC power.

Show 8 dependent claims

Description

This patent application claims the benefit of and priority to U.S. Provisional Application No. 62/642,198, filed on Mar. 13, 2018, the contents of which are hereby incorporated by reference in their entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

The invention described herein was made by employees of the United States Government and may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefore.

BACKGROUND OF THE INVENTION

Typical direct energy conversion systems are based on photovoltaic processes of a single photon to a single electron transfer within the valence band, thermoelectrics of thermally agitated electrons, fuel cells of chemically deprived electrons, or magnetohydrodynamic generators of electrons in free-to-free transition. These systems have respective intrinsic limits to generate a number of useful electrons for power conversion since these systems use the electrons only in the valence band. Accordingly, the overall energy density of typical direct energy conversion systems is intrinsically poor.

Some types of systems that use radioactive decay processes, such as alpha or beta batteries, are widely mentioned, but the fundamental underlying principles, the technical contents, and the ways to build are not clearly defined. Nuclear batteries or nuclear capacitors have a serious problem with harnessing electrons from the valence band of materials using the unusually low energy capacity of the alpha and beta particles. The energy and number of beta particles emitted from a radioactive decay process are very small, resulting in the conversion systems using these beta particles having very small power densities. Even high energy beta particles do not have a long mean free path due to the Coulomb scattering and so are not able to penetrate much into the morphological orders of materials. Current nuclear batteries subsidize the beta decay electrons and the alpha particles to generate electron disparity of a p-n junction that creates anisotropic electron plasma, subjecting to the Brillouin limit within the frame of the valence band. In such a p-n junction, the available number of electrons are limited to a few Coulombs per cubic centimeter. Therefore, these nuclear batteries only render a low energy density system.

BRIEF SUMMARY OF THE INVENTION

Systems, methods, and devices of the various embodiments enable a Nuclear Thermionic Avalanche Cell (NTAC) to capture gamma ray photons emitted during a fission process, such as a fission process of uranium-235 (U-235), and at the same time to breed and use a new gamma ray source to increase an overall emission flux of gamma ray photons. Various embodiments combine a fission process with the production of cobalt-60 (Co-60), thereby boosting the output flux of gamma ray photons for use by a NTAC in generating power. Various embodiments combine a fission process with the production of Co-60, a NTAC generating avalanche cell power, and a thermoelectric generator generating thermoelectric power. The various embodiments may solve problems associated with the short supply of radio-isotopes and solve problems with the low flux density of gamma ray photons from radio-isotopes.

Various embodiments may include a reactor system, including a containment vessel and one or more fission process reactor units supported within the containment vessel, each of the one or more fission process reactor units comprising a radioactive element, a cobalt-59 (Co-59) layer, a NTAC, and a thermoelectric generator, wherein a fission process of the radioactive element releases neutrons to the Co-59 layer to breed Co-60, the NTAC receives gamma rays from the fission process, a by-product of the fission process, and the bred Co-60 to generate direct current (DC) power, and the thermoelectric generator receives thermal energy from the radioactive element and the NTAC to generate DC power. In some embodiments, the reactor system may include a fluid circulated within the containment vessel, such as argon gas. In some embodiments, the radioactive element may include U-235 and the by-product of the fission process is cesium-137 (Cs-137). In some embodiments, the U-235 is a fuel rod and the fission process is controlled by a primary neutron source rod controllably inserted or removed from the fuel rod. In some embodiments, the Co-59 layer at least partially encircles the U-235 fuel rod. In some embodiments, the Co-59 layer is disposed between the U-235 fuel rod and the NTAC. In some embodiments, the NTAC is disposed between the Co-59 layer and the thermoelectric generator. In some embodiments, the NTAC and the thermoelectric generator are connected in tandem to a same DC bus or load. In some embodiments, the NTAC includes a photoionic electron emitter separated from an electron getter electrode by a thermionic vacuum gap.

These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments, and together with the general description given above and the detailed description given below, serve to explain the features of the embodiments.

FIG. 1 is component block diagram illustrating a cross section of an embodiment fission process reactor system including a single fission process reactor unit.

FIG. 2 is a cross section of the fission process reactor unit of FIG. 1 having a circular cross section shape according to an embodiment.

FIG. 3 is a cross section of the fission process reactor unit of FIG. 1 having a square cross section shape according to an embodiment.

FIG. 4 is component block diagram illustrating a cross section of an embodiment fission process reactor system including multiple fission process reactor units.

FIG. 5 is a cross section of the fission process reactor units of FIG. 4 having circular cross section shapes according to an embodiment.

FIG. 6 is a cross section of the fission process reactor units of FIG. 4 having square cross section shapes according to an embodiment.

DETAILED DESCRIPTION OF THE INVENTION

For the purposes of the description herein, it is to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.

The word exemplary is used herein to mean serving as an example, instance, or illustration. Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations.

The various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and implementations are for illustrative purposes, and are not intended to limit the scope of the embodiments or the claims.

The energy conversion technology referred to as Nuclear Thermionic Avalanche Cells (NTACs) was recently developed at the National Aeronautics and Space Administration's (NASA's) Langley Research Center. NTACs are described in U.S. Patent Application Publication No. 2016/0225476 to Choi et al., the contents of which are hereby incorporated by reference in their entirety.

A NTAC needs gamma ray sources to make a free-to-free transition of intra-band electrons for power generation. Typically known and readily available gamma ray sources are the isotopes of cesium (e.g., cesium-137 (Cs-137), cobalt-60 (Co-60), and sodium-22 (Na-22). The demand of these materials (e.g., Cs-137, Co-60, and Na-22) might increase with the scale of NTAC power generation. Although the yielding rate of Cs-137 is about 6% from nuclear waste of fission processes, the gamma photon flux from Cs-137 is not large since the decay rate is slow. The half-life of Cs-137 is approximately 30 years and proceeds by both beta decay and gamma emission from an intermediate state. Both the electron and gamma emissions are highly ionizing radiation. During a nuclear fission reaction, these isotopes (e.g., Cs-137, Co-60, and Na-22) are also produced and emanate a sufficient amount of gamma photons.

The successful development of NTACs hinges on the flux density of gamma ray photons that will make a huge number of electrons in intra-bands of atom to undergo free-to-free transition. However, not many sources of high flux gamma ray photons are available. Thus, the short supply of radio-isotopes and the low flux density of gamma ray photons from radio-isotopes present a problem to successful developments of NTACs.

Systems, methods, and devices of the various embodiments enable a NTAC to capture gamma ray photons emitted during a fission process, such as a fission process of uranium-235 (U-235), and to breed and use a new gamma ray source to increase an overall emission flux of gamma ray photons. Various embodiments combine a fission process with the production of Co-60, thereby boosting the output flux of gamma ray photons. Various embodiments boost the flux density of gamma ray photons by combining a breeding process of Co-60 with Cs-137 during a fission process. A good number of slow neutrons that are generated under a fission process can be used for breeding Co-60 by neutron injection into cobalt-59 (Co-59) in various embodiments. The Co-60 combined with Cs-137, which is naturally produced from a fission process of uranium-235 (U-235), may drastically increase the gamma ray emission in various embodiments.

Various embodiments enhance high gamma ray emission. The flux density of gamma ray photons is an important factor to determine the NTAC power output. To increase the flux density, in various embodiments, two or more radio-isotopes may be mixed by mass fraction. In various embodiments, directly combining the NTAC with the fission process simplifies the power generation in a single device as a combined cycle. In various embodiments, an added layer of cobalt-59 may be transmitted into cobalt-60 by absorbing a neutron from a fission reactor core. Various embodiments combine a fission process with the production of Co-60, a NTAC generating avalanche cell power, and a thermoelectric generator generating thermoelectric power.

Normally the higher the decay rate is, the higher the flux density is. Also with the flux density the energy of gamma photon determines the total deliverable photon power. A combination of two or three radio-isotopes based on the mass fraction and decay (or operation) time of source materials controls the emission flux of gamma ray photons. For a long operation requirement, the ratio by mass fraction is heavily weighted to Cs-137 with relatively small fraction of Co-60 or Na-22. The necessity of adding Co-60 and Na-22 can be justified for the boosted power achievable a few years from the beginning of operation. Or vice versa is also true for boosting power for a short operation. The total photon power deliverable by Cs-137 may be 0.34 Watts per gram (W/g), the total photon power deliverable by Co-60 may be 9.39 W/g, and the total photon power deliverable by Na-22 may be 47.188 W/g. Accordingly, any ratio of the mixture of these radio-isotopes (i.e., Cs-137, Co-60, and Na-22) can proportionally determine the harnessable power.

In one of the nuclear fission reactions, U-235 absorbs a slow neutron (<2 megaelectronvolt (MeV)) to become U-236. Then U-236 splits into Cs-137 and Rubidium-95 (Rb-95) and simultaneously releases 3 slow neutrons, gamma ray photons (˜7 MeV), and 191 MeV of energy as a net conversion of mass reduction through fission process. This fission process creates radio-isotopes, such as Cs-137 and Rb-95, that undergo a decay process by releasing gamma photons and slow neutrons. The fission reaction alone releases ˜7 MeV in prompt emission of gamma ray photons. The three additional slow neutrons collide with neighboring U-235 atoms for chain fission reaction. Since each reaction generates 3 slow neutrons, the number of slow neutrons is multiplied over the chain reactions. Throughout the fission reaction, the number of these slow neutrons is continuously increased to a point far more than is necessary for maintaining the chain reactions.

Accordingly, these energetic neutrons (<2 MeV) can be used for breeding other radioisotopes, such as Co-60. For example, if naturally existing cobalt (Co-59) is placed in a fission reactor and bombarded by neutrons, it captures a neutron and becomes Co-60 through a transmutation process. That is, 2759Co+01n2760Co. The newly created Co-60 undergoes firstly the beta decay into 2860Ni*+10e and then 2860Ni*, which is in excited state, takes a transition down to the stable ground state by releasing its own energy as a form of gamma ray photons through a decay process.

In various embodiments, a controllable reactor, such as a U-235 control rod based reactor, may be wrapped with a blanket of Co-59, a NTAC, and a thermoelectric generator. The fission reaction of the controllable reactor generates substantial amount of thermal energy (191 MeV) through its exothermic transmutation process, radioisotopes, neutrons, and gamma ray photons. The absorption of gamma ray photons generates not only a huge number of intraband electrons through the bound-to-free and the free-to-free transitions, but also thermal energy by the multiple scatterings of gamma photons and quenching process of recoiling electrons. Such a large amount of thermal energy is converted by thermoelectric conversion process as a bottoming cycle of the system conversion hierarchy while the thermionic conversion of a huge number of free-to-free transition electrons occurs in the NTAC as a topping cycle.

The various embodiment nuclear fission reactors combined with a NTAC and thermoelectric generator are fundamentally different from the conventional reactors. First the embodiments nuclear fission reactors with a NTAC breed Co-60 as a gamma ray source, in addition to Cs-137 as a fission product. These two gamma ray sources are additive on top of the fission process that alone generates gamma ray photons. Accordingly, the gamma ray photons from fission process (˜7 MeV prompt), Cs-137 (0.6617 MeV, 30.17 year), and Co-60 (1.3325 MeV, 5.2714 year) are all combined together to enhance the emission of gamma ray photons. Second, the thermal energy (191 MeV) is a major portion of fission process. This thermal energy is converted by multi junction or metal junction thermoelectric process rather the conventional Rankine cycle using steam in conventional reactors. In this manner, the various embodiment nuclear fission reactors combined with a NTAC and thermoelectric generator generate power directly, rather than through the generation of steam to turn a turbine. Accordingly, no steam or condensate lines may be required in the various embodiments and no turbine is required in the various embodiments to generate electricity. In the various embodiments, the multiple layers encapsulating around the fission core may act to lower the energy of those fast neutrons which are generated through chain reactions of fission. In various embodiments, any rejected heat can be removed by circulating inert gas, such as helium (He) or argon (Ar). At the same time, this intervening gas not only removes the remainder of thermal energy, but also lowers (or slows down) the energy of neutrons.

FIG. 1 is component block diagram illustrating a cross section of an embodiment fission process reactor system 100 including a single fission process reactor unit 101. The fission process reactor unit 101 includes a radioactive element, such as a fission reactor element, combined with a NTAC and thermoelectric generator 107. The fission process reactor unit 101 according to various embodiments boosts the flux density of gamma ray photons by combining the emissions from Co-60, Cs-137, and fission process together as the emission source for the NTAC included in the fission process reactor unit 101. The NTAC may include a photoionic electron emitter 106 separated from an electron getter electrode 108 by a thermionic vacuum gap 104. The radioactive element in the fission process reactor unit 101 may include a radioactive fuel rod 103, such as U-235 fuel rod, with a fission controller, such as a primary neutron source rod 102 lowered and raised into the radioactive fuel rod 103 by a fission control system 110. The fission control system 110 may include various types of mechanical and/or electro-mechanical control elements, such as motors, etc., to raise and/or lower the primary neutron source rod 102 into and out of (i.e., controllably insert/controllably remove) the radioactive fuel rod 103 to control the rate of fission.

In various embodiments, the radioactive element, such as the radioactive fuel rod 103 (e.g., a U-235 fuel rod), may be wrapped (or cladded, plated, or otherwise at least partially encircled) by a layer of Co-59 105. In various embodiments, the fission process of the radioactive element, such as the radioactive fuel rod 103 (e.g., a U-235 fuel rod) is used to breed the Co-60 from the cobalt-59 layer 105 by the bombardment of neutrons generated from fission reaction. The layer of Co-59 105 may not only capture neutrons to be converted to Co-60, but also lower the energy of any passing fast neutrons for controlling the fission process.

In various embodiments, the outside surface of the Co-59 layer 105 is covered by the electron emitter materials of the photoionic electron emitter 502, such as a high Z and f-block material (e.g., lanthanides). This high Z and f-block material receives the combined gamma ray photons from fission process, Cs-137, and the Co-60 which is bred by capturing the neutrons from fission process. The Co-59 layer 105 captures most of neutrons from fission process because it completely (or nearly completely) encapsulates the fission fuel core (e.g., radioactive fuel rod 103). In the same way, the high Z and f-block material receives the most of gamma ray photons that are generated from the encapsulated fission material and the bred Co-60. Under the barrage of gamma ray photons, the f-block material releases a huge number of electrons from their intra-band. These avalanche electrons are emitted outward (i.e., out from the direction of the radioactive fuel rod 103) and cross the vacuum gap 507 and are delivered to the electron getter electrode 108 across the vacuum gap 507 which surrounds the f-block emitter (i.e., the photoionic electron emitter 502). The movement of electrons from the photoionic electron emitter 502 across the vacuum gap 507 and to the electron getter electrode 108 generates direct current (DC) power from the NTAC. In the embodiment fission process reactor unit 101, the gamma ray photons are all combined together; i.e., (1) the gamma ray photons (7 MeV) from the prompt fission reaction; (2) the gamma ray photons (0.6617 MeV) from Cs-137 which is a by-product of fission process, and (3) the gamma ray photons (1.3325 MeV) from Co-60 which is bred from the Co-59 layer 105 by absorbing neutrons within fission reactor. In this manner, the photoionic electron emitter 502 of the NTAC in various embodiments receives greater amounts of gamma rays in the embodiment fission process reactor unit 101 than a NTAC would receive from just the same size of gamma ray source itself in place of U-235 fuel rod.

PatentSwarm provides a collaborative workspace to search, highlight, annotate, and monitor patent data.

Start free trial Sign in