REPRESENTATION, DECISION MODELS, AND USER INTERFACE FOR ENCODING MANAGING PREFERENCES, AND PERFORMING AUTOMATED DECISION MAKING ABOUT THE TIMING AND MODALITIES OF INTERPERSONAL COMMUNICATIONS

US 2008 134 069A1

drawing #0

Show all 61 drawings

The present invention relates to a system and methodology providing a user interface that can be employed by contactors and contactees in conjunction with a communications architecture for identifying and establishing an optimal communication based on preferences, capabilities, contexts and goals of the parties to engage in the communication. The user interface can include a graphical display having a plurality of display objects and associated input fields operable by one or more parties to a communication in order to facilitate convenient access, control, personalization and communications via the communications architecture. For example, configuration capabilities are provided in the user interface to enable operational adjustments to one or more operating parameters, communications groupings, policies and/or context preferences relating to a preferred modality of communication and to potential parties of communication between the contactors and contactees. User interface controls are also provided for defining deterministic policies and for encoding preferences for cost-benefit analyses.

PatentSwarm provides a collaborative workspace to search, highlight, annotate, and monitor patent data.

Start free trial Sign in

Tip: Select text to highlight, annotate, search, or share the selection.

Claims

1. A user interface to facilitate communications between parties, comprising:
a display providing one or more display objects associated with configuring a data store, the data store adapted to receive N parameters, N being an integer, the N parameters relating to at least one of a communications preference, context and policy, the N parameters employed to guide decisions that facilitate optimal communications between the parties; and
one or more inputs associated with the display objects to facilitate configuration of the user interface according to the at least one of the communications preference, context and policy associated with the parties.

Show 19 dependent claims

Description

This application is a divisional of U.S. patent application Ser. No. 10/281,546, filed Oct. 28, 2002, entitled REPRESENTATION, DECISION MODELS, AND USER INTERFACE FOR ENCODING MANAGING PREFERENCES, AND PERFORMING AUTOMATED DECISION MAKING ABOUT THE TIMING AND MODALITIES OF INTERPERSONAL COMMUNICATIONS, which is a continuation-in-part of U.S. patent application Ser. No. 09/809,142, which was filed Mar. 15, 2001, entitled System and Method For Identifying and Establishing Preferred Modalities or Channels for Communications Based on Participants' Preferences and Contexts. The entireties of these applications are incorporated herein by reference.

TECHNICAL FIELD

The present invention relates generally to computer systems, and more particularly to a system and method for communications, display, configuration and optimization of a communications architecture that facilitates ideal communication links between contactors and contactees.

BACKGROUND OF THE INVENTION

Advanced technology computer and communication systems have transformed many important aspects of human and computer interactions. For example, with technology advancements such as wireless and Internet systems, electronic messaging and information systems have become much more sophisticated. These systems may include e-mail, voice mail, videoconferencing, pager and cell phone technologies, for example, wherein almost an infinite supply of information may be sent and retrieved between parties in a concurrent manner. Due to the content and volume of information available, and the ever-increasing number of modalities for communicating such information, other systems have been developed to manage, direct and control message exchanges between parties and/or systems.

In some cases, methods employing automated decision making tools derived from the Decision Science and related Artificial Intelligence communities, as well as other techniques have been employed to manage and direct electronic information transfers. As a general example, this can include considerations regarding what type of device or modality (e.g., cell phone, pager, e-mail) one or all parties have access to. Other considerations can enable systems to direct messages to a particular location and/or communication modality associated with the party, as well as consider whether the value of information contained within a message exceeds the cost of disrupting the recipient presently or in the future. For example, one particular recipient of a message may desire to receive emergency messages from family, at any time of the day and by any or all available system or modality, desire to receive non-project related business messages from coworkers via e-mail, and desire not to receive some messages at all such as Spam e-mail or other unwanted solicitations. As can be appreciated, expectations for communicating between parties can differ greatly from one party to another.

In order to provide these and other communications capabilities, intelligent decision systems for mediating and optimizing interpersonal communications can be endowed with the ability to consider and operate upon a number of decision-making variables concerning multiple aspects of the party's circumstances when managing and directing message traffic between parties. For example, these variables can enable the system to determine and make decisions regarding a particular party's communications desires and distinguish competing requirements from one party to another. In other words, respective parties have different priorities, desires and needs that can influence decision-making processes and communications flowing from the system. Consequently, in order to satisfy a variety of requirements applying to a plurality of different circumstances and parties, many decision-making variables can be acted upon to tailor communications requirements according to a particular user's needs.

Often, along with the large number of variables that influence these systems, there is a complex and/or competing relationship between the decision-making variables, however. For example, one variable or combination of variables may subtly or overtly influence decisions relating to other variables or combinations thereof. Since the number of variables involved in the decision-making process can be extensive and/or interrelated, it may be challenging for users to personalize the decision-making process to meet specific requirements relating to that user's circumstances and desires. In other cases, it can be difficult or impossible to convey these desires between communicating parties.

SUMMARY OF THE INVENTION

The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is intended to neither identify key or critical elements of the invention nor delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.

The present invention relates to a system and methodology providing decision models, useful representations of preferences and candidate controls and associated user interfaces to facilitate reasoning about the timing and modality of communications between contactors and contactees. According to one aspect of the present invention, a decision model and the user interface enables users (contactors and/or contactees) to define groups of communications parties (e.g., static groups, groups by relationships, dynamic groups by activities) in which to conduct potential communications. Users can assign groups to different communication policies and can further define and refine policies for the communications. In addition, interface users can define special contexts (e.g., contexts that are called out in the policies) and can define preferences for notifications about an awareness of communications attempts from other contacting parties. Furthermore, users can define context-sensitive communication-sequences for best-effort communications, if desired. At the end of an interface session, for example, an XML file that captures the user's settings and preferences can be captured as a profile. The XML file can be subsequently transmitted to a server and/or other system to control the user's communications with other parties.

The user interface provides an interactive experience for contactors and contactees and includes sharing, displaying, editing and adjusting one or more communications preferences, policies, groupings and/or decision parameters in conjunction with a communications architecture. In accordance with the architecture, preferred modalities or channels of communications are established based on a participants preferences and/or contexts, wherein the architecture identifies and establishes data communications and determines optimal communication links between contactors and contactees. Determinations can be based on deterministic and/or uncertain contactee and/or contactor preferences, capabilities and context, both present and predicted.

Beyond the specification of logical relationships and policies, the present invention provides an alternate representation of communication preferences centering on the encoding of scalar-valued properties, including such variables as the costs of interruption in different contexts, the costs of deferring a call for some period of time, and the costs associated with a suboptimal communication modality or channel. Several models are provided that can make use of such scalar values, and alternate definitions of the scalar values, including utilities consistent with the axioms of utility theory (e.g., as described in the work of von Neumann and Morgenstern) and/or dollar values that a user would be willing to pay to avoid a suboptimal situation, to be used in formal decision analyses about communications, and heuristic priority measures that can be used in less formal heuristic cost-benefit analyses.

In accordance with one aspect of the present invention, the representations of key variables and preferences, the associated logical and/or numerical communication decision models, and associated user interfaces can facilitate exchanges of information relating to status and/or preferred modalities of communications between parties such as exchanging lists, gestures, icons, and suggestions regarding communications capabilities and desires from one party to the other. In this manner, interface users can determine preferred modalities of communication for a prospective contactor or contactee in conjunction with receiving other information as to the timing and/or current capabilities of attempted communications with the party. Thus, communications between parties are facilitated and optimized according to explicit and/or inferred desires or intentions of the parties via the user interface.

According to another aspect of the present invention, a configuration and runtime user interface can be employed to display one or more communications modalities associated with preferred and/or determined modalities of communication as provided by the communications architecture. Thus, a cross-device experience can be initiated between contactors and contactees along with enabling users to adjust and/or configure one or more operational parameters within the communications architecture. For example, this can include providing or sharing lists relating to one or more preferences of the contactors and/or contactees regarding a currently determined best mode communications device or can include user supplied alternatives or overrides to the determination.

Other features can include sharing user-configurable or inferred gestures such as I am busy now or My cell phone battery has died. Input adjusters such as sliders, buttons, and input fields can be included within the user interface to enable users to alter characteristics of the communications policies, preferences and groupings. For example, the communications architecture can determine (e.g., utilizing decision-theoretic policies) that the best available communications device to reach a contactee is currently device A and/or generally device B. If over time the user decides that more or less communications should be received/directed to device B, then an adjustment such as a slider can be provided to tune or alter the decision-making policies within the architecture to increase or decrease the likelihood of communications from device B. Adjustments can also include computing a boost value that can be utilized to increase or decrease the effects of one or more operating policies or groupings of variables within the communications architecture.

Moreover, the growth in the popularity of personal computers and computing applications is providing new opportunities and new substrates for initiating communications. For example, there is a significant opportunity to integrate access to real-time interpersonal communications with other software applications, such as word processors, and thus, allowing people to initiate communications directly with others from within a multitude of applications in accordance with the present invention. In some cases, such communications can include metadata that shares information or pointers about the project or content at the focus of attention of the contactor with the contactee, who may or may not be using the same application during the communication. A person may desire to segment people into different groups and/or projects or topics and specify how incoming calls from different people and on different projects are to be handled. For some, a person may desire to be interrupted no matter what they are doing. For other communication attempts, a recipient of an incoming communication may want to have the timing or the channel of the call shifted to another time and/or channel respectively if they are busy with an activity that of some degree of uninterruptability.

Furthermore, a user (the contactee) may indicate a set of people (contactors) whose attempts to establish a real-time communication with that user when that user was busy would be rescheduled automatically, and thus time shifted in an efficient manner. Moving beyond just time to decision making about the modality of communications, a user without access to a device with a graphical display and full keyboard may want to have an attempt at an incoming communication to be shifted in time so as to facilitate that the user will have access to a full desktop system based on the metadata associated with the communication attempt, which indicates that the intent of the communication is to establish a real-time communication about a portion of edited text in a shared document that can be viewed simultaneously by the contactor and contactee should both have access to a full networked desktop computing system.

The following description and the annexed drawings set forth in detail certain illustrative aspects of the invention. These aspects are indicative, however, of but a few of the various ways in which the principles of the invention may be employed and the present invention is intended to include all such aspects and their equivalents. Other advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram illustrating a communications system and user interface in accordance with an aspect of the present invention.

FIG. 2 is a diagram illustrating a plurality of configuration settings in accordance with an aspect of the present invention.

FIG. 3 is a diagram illustrating group configurations in accordance with an aspect of the present invention.

FIG. 4 is a diagram illustrating policy assignments in accordance with an aspect of the present invention.

FIG. 5 is a diagram illustrating defining states and setting state parameters in accordance with an aspect of the present invention.

FIG. 6 is a flow chart diagram illustrating various configurations in accordance with an aspect of the present invention.

FIG. 7 is a flow chart diagram illustrating dynamic aspects of a communications system in accordance with an aspect of the present invention.

FIG. 8 is a diagram illustrating an XML configuration file in accordance with an aspect of the present invention.

FIG. 9 is a diagram illustrating a graphical user interface to configure a communications system in accordance with an aspect of the present invention.

FIG. 10 is a diagram illustrating a graphical user interface to define and populate groups in accordance with an aspect of the present invention.

FIG. 11 is a diagram illustrating a graphical user interface to further define and populate groups in accordance with an aspect of the present invention.

FIG. 12 is a diagram illustrating a graphical user interface to define relationships in accordance with an aspect of the present invention.

FIG. 13 is a diagram illustrating a graphical user interface to define groups in a dynamic manner, based on a sensed situation or state in accordance with an aspect of the present invention.

FIG. 14 is a diagram illustrating a graphical user interface to assign groups to policies via drag and drop action in accordance with an aspect of the present invention.

FIGS. 15-17 are diagrams illustrating the functionality of a graphical user interface to further make the assignment of groups, people, dynamic projects, or situations to policies dependent on the time of day and day of week, to show an example of one of several ways that such assignments of people and groups to policies can be made a function of other variables.

FIGS. 18-22 are diagrams illustrating a graphical user interface to configure policies in accordance with an aspect of the present invention.

FIGS. 23-29 are diagrams illustrating a graphical user interface to define and configure contexts in accordance with an aspect of the present invention.

FIG. 30 is a diagram illustrating a graphical user interface to configure awareness attempts in accordance with an aspect of the present invention.

FIGS. 31-34 are diagrams illustrating a graphical user interface to define routing sequences in accordance with an aspect of the present invention.

FIG. 35 displays an influence diagram capturing one formulation of a cost-benefit analysis approach to controlling the timing and modality of communications.

FIG. 36 illustrates an alternative model for controlling timing and modality of communication.

FIGS. 37-39 are diagrams illustrating a graphical user interface allowing users to assess and encode the costs of interruption associated with an incoming communication based on the contactee's context in accordance with an aspect of the present invention.

FIGS. 40-41 are diagrams illustrating a graphical user interface to assign the cost of deferring an incoming call based on classes, people or groups in accordance with an aspect of the present invention.

FIG. 42 is a diagram illustrating a graphical user interface demonstrating how additional cost can be added for additional properties of people and/or communications.

FIG. 43 and FIG. 44 are diagrams illustrating a graphical user interface to assess the cost associated with selecting a suboptimal modality or channel of communication given the fundamental properties of the core content of the communication.

FIG. 45 is a diagram illustrating a graphical user interface depicting an alternate manner for assigning priority in accordance with the present invention.

FIGS. 46-50 are diagrams illustrating a graphical user interface depicting alternative aspects of defining context in accordance with the present invention.

FIG. 51 is a diagram illustrating a graphical user interface for defining profiles during various time segments in accordance with the present invention.

FIG. 52 is a schematic block diagram illustrating a system for identifying an optimal communication based on the preferences, capabilities, contexts and goals of the parties to engage in the communication, in accordance with an aspect of the present invention.

FIG. 53 is a schematic block diagram illustrating a system for identifying and establishing an optimal communication based on the preferences, capabilities, contexts and goals of the parties to engage in the communication, in accordance with an aspect of the present invention.

FIG. 54 is a schematic block diagram further illustrating a system for identifying and establishing an optimal communication based on the preferences, capabilities, contexts and goals of the parties to engage in the communication, in accordance with an aspect of the present invention.

FIG. 55 illustrates an environment in which the present invention may be employed.

FIG. 56 is a flow chart illustrating one particular methodology for carrying out an aspect of the present invention.

FIG. 57 is a flow chart illustrating another methodology for carrying out an aspect of the present invention.

FIG. 58 is a schematic block diagram of an exemplary operating environment for a system configured in accordance with the present invention.

FIG. 59 is a schematic block diagram illustrating context awareness processing in accordance with an aspect of the present invention.

FIG. 60 illustrates processing associated with a contactor attempting a communication, in accordance with an aspect of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a system and methodology providing a user interface that can be employed by contactors and contactees in conjunction with a communications architecture for identifying and establishing an optimal communication based on preferences, capabilities, contexts and goals of the parties to engage in the communication. The user interface can include a graphical display having a plurality of display objects and associated input fields operable by one or more parties to a communication in order to facilitate convenient access, control, personalization and communications via the communications architecture. For example, configuration capabilities are provided in the user interface to enable operational adjustments to one or more operating parameters, communications groupings, policies and/or context preferences relating to a preferred modality of communication and to potential parties of communication between the contactors and contactees. In addition, cross-device information can be shared between the contactors and the contactees relating to the preferences and/or determined contexts of the communicating parties in order to facilitate optimal communications between the parties. Other aspects can include components and/or processes for defining orderings over a handling of calls by multiple parameters, wherein a contactor is provided a list of options as ranked by one or more users' preferences, the preferences provided in an arranged order of a given user's desire that relates to a communications situation at hand. These aspects can include sharing out the arranged order directly or only a best option, if desired. Decisions regarding the options, preferences, and/or orderings can be based on an identity, a group identity, a context and/or other considerations.

Referring initially to FIG. 1, a system 10 illustrates a contactor user interface 20 and contactee user interface 24 that interact with a contact manager 30 to facilitate optimal communications between parties such as contactors and contactees in accordance with an aspect of the present invention. The contact manager 30 is associated with a data store 32 that includes a plurality of policies, parameters, profiles, decision variables and/or formulae to enable contactors to communicate with contactees. The information stored in the data store 32 is related to optimal or desired communications preferences of the parties that are defined via the user interfaces 20 and 24, respectively. Thus, the contact manager 30 employs the information within the data store 32 to make decisions regarding how to establish communications between the contactors and contactees in accordance with the communications preferences. It is noted that the contact manager 30 and associated communications architecture for establishing optimal communications will be described in more detail below in relation to FIGS. 52-60.

PatentSwarm provides a collaborative workspace to search, highlight, annotate, and monitor patent data.

Start free trial Sign in