System and method for processing tokenless biometric electronic transmissions using an electronic rule module clearinghouse

US 2005 144 133A1

drawing #0

Show all 8 drawings

Herein is described a tokenless biometric method for processing electronic transmissions, using at least one user biometric sample, an electronic identicator and an electronic rule module clearinghouse. The steps for processing of the electronic transmissions comprise of a user registration step, wherein a user registers with an electronic identicator at least one registration biometric sample taken directly from the person of the user. A formation of a rule module customized to the user in a rule module clearinghouse, wherein at least one pattern data of a user is associated with at least one execution command of the user. A user identification step, wherein the electronic identicator compares a bid biometric sample taken directly from the person of the user with at least one previously registered biometric sample for producing either a successful or failed identification of the user. In a command execution step, upon successful identification of the user, at least one previously designated rule module of the user is invoked to execute at least one electronic transmission. The above-mentioned steps are conducted in a manner wherein a biometrically authorized electronic transmission is conducted without the user presenting any personalized man-made memory tokens such as smartcards, or magnetic swipe cards.

PatentSwarm provides a collaborative workspace to search, highlight, annotate, and monitor patent data.

Start free trial Sign in

Tip: Select text to highlight, annotate, search, or share the selection.

Claims

1-25. (canceled)
26. A method for providing approval for a third party to access a value account controlled by a primary account holder, the process comprising:
receiving a biological sample proffered by the third party via a biological identification device;
comparing the proffered biological sample to biological identification data stored in a database;
making a determination of whether the third party has been authorized by the primary account holder to access the value account; and
in the event that the third party is determined to be authorized to access the account, transmitting an approval signal indicating that the third party may have access to the value account.

Show 7 dependent claims

34. A method for providing approval for a third party to access a value account controlled by a primary account holder, the process comprising:
receiving a biological sample proffered by the third party via a biological identification device;
comparing the proffered biological sample to biological identification data stored in a database;
making a first determination, based on comparing the proffered biological sample, of whether the third party is registered in the database;
in the event that the third party is determined to be registered in the database, making a second determination of whether the third party has been authorized by the primary account holder to access the value account; and
in the event that the third party is determined to be authorized to access the value account, transmitting an approval signal indicating that the third party may have access to the account.

Show 2 dependent claims

37. A method for providing approval for a third party to access a value account controlled by a primary account holder, the process comprising:
receiving a biological sample proffered by the third party via a biological identification device;
receiving transaction data corresponding to a transaction on the value account, initiated by the third party;
comparing the proffered biological sample to biological identification data stored in a database;
making a first determination, based on comparing the proffered biological sample, of whether the third party is registered in the database;
in the event that the third party is determined to be registered in the database, making a second determination of whether the third party has been authorized by the primary account holder to access the account; and
in the event that the third party is determined to be authorized to access the account, making a third determination of whether the transaction data goes beyond a predetermined transaction parameter limit; and
in the event that the third party is determined to be authorized to access the account, and it is determined that the transaction data does not go beyond the predetermined transaction parameter limit, transmitting an approval signal indicating that the third party may have access to the account.

Show 5 dependent claims

43. A system for biological authorization of financial transactions, the system comprising:
a terminal including a biological identification device;
a central database server connected by a first network path to the terminal to receive a payment request accompanied by a biological ID signature generated by the biological identification device and a personal ID number presented by a purchaser; and
a financial institution server connected by a second network path to the central database server to receive the payment request accompanied by an authorization packet;
wherein, in the event that the financial institution server receives the payment request accompanied by the authorization packet, and the value account corresponding to the payment request has sufficient available value, then a transaction authorization is transmitted to the terminal.

Show 2 dependent claims

Description

CROSS REFERENCE

This application is a continuation of U.S. application Ser. No. 09/244,784 filed Feb. 5, 1999, now pending, which is a continuation-in-part of U.S. application Ser. No. 07/705,399, filed on Aug. 29, 1996 now U.S. Pat. No. 5,870,723, which is a continuation-in-part of U.S. application Ser. No. 08/442,895 filed on May 17, 1995 now U.S. Pat. No. 5,613,012 which is a continuation-in-part of U.S. application Ser. No. 08/345,523, filed on Nov. 28, 1994, now U.S. Pat. No. 5,615,277.

FIELD OF THE INVENTION

The invention relates generally to computer systems designed to execute electronic transmissions on behalf of users. More specifically, this invention relates to tokenless biometric computer systems which do not require the user to possess any man-made memory devices resident with user-customized information, such as smart cards, magnetic swipe cards or personal computers. This invention does not relate to any automated door lock or automated physical site access mechanisms.

BACKGROUND OF THE INVENTION

The use of electronic transmissions has proliferated with the advent of personal computers, or terminals, and improved communications networks such as the Internet. Billions of electronic transmissions are sent and received each year in the United States. An electronic transmission, as used herein, is defined as the accessing, processing, or presentation of electronic data, to include word-processed content, mathematical spreadsheets, emails, visual or graphic images, audible content, software code, pattern data, execution commands, computer software programs, Internet web sites, software rule modules, electronic instant messaging, and the like. Such electronic transmissions may take many forms, including: an electronic request for user-customized or user-unique access to stored database content; an electronic request to customize the processing of data according to user-customized or user-unique criteria; and an electronic request to present or display data in a pre-determined, user-customized format.

It should be noted that user-customized is different from user-unique. Electronic data or electronic transmissions which are customized to a user, or user-customized, have been customized-by or for a user, but may not necessarily be unique to that user. Therefore, user-customized data which applies to one user may also apply similarly or identically to another user. However, electronic data or electronic transmissions which are unique to a user, or user-unique, are distinctive and without equal, and hence are exclusive to that particular user.

In sum, an electronic transmission is the accessing, processing, or presentation of any electronic data or content which does not in and of itself constitute or execute either: an electronic financial transaction wherein the exchange or alteration of any financial assets occurs, nor; an automated door lock or an automated physical site access mechanism.

A result of the significant popularity of electronic transmissions has been a marketplace transition from using an off-line, individual desktop personal computing model to using an on-line, central-server communications model. Specifically, corporations and individual consumers are moving the main functions of storage, access, processing and presentation of their electronic transmissions from decentralized, unconnected desktop terminals, to centralized databases on servers which service and connect to on-line PCs, known as client terminals, via dial-up, leased lines or wireless networks. In this transition, such client terminals are also increasingly being connected to each other. An integrated web of communications is forming that enormously expands the functions and benefits of using such clients, evidenced by fast growth of the Internet and corporate intranets.

At the same time, cost reductions in miniaturizing computer hardware components have led to the widespread use of a new generation of computing devices, known herein as thin-clients, which are even less expensive and more mobile than traditional desktop terminals and client terminals. The appeal of these new thin-clients is that they offer the potential for the user to send and receive electronic transmissions at virtually any time and from virtually anywhere. Many of these lower cost thin-clients access much of their processing and memory capacities on-line from remote servers via Internet, intranet or extranet connections. These thin-client devices include, but are not limited to: wireless pagers; wireless and tethered telephones; network computers; thin-client exercise machines; electronic books; public access kiosks such as automated teller machines, vending machines, airport information terminals and or public kiosks; hand-held personal digital assistants such as Palm Pilots and the like; on-line photocopy machines; automobile embedded Internet-connected appliances which download preferred radio stations, seat and temperature adjustments, and the like; thin-client household appliances such as refrigerators, microwaves, and the like; thin-client home entertainment appliances including on-line televisions such as WebTV, portable digital audio systems such as the Rio, along with their associated remote controls.

These two trends, of proliferating personal computing devices and of increased on-line communications usage, have led to a distinct problem: with so may personal computing devices, the user now has user-customized electronic data stored on multiple man-made memory devices, or tokens, which the user must manage and possess for storage, access, processing and presentation of their electronic transmissions. Further, if the user wants all of these new computing tokens to possess the same capabilities with respect to the user's personalized information and customized functions, then the user needs to frequently and redundantly enter all such user-customized data into each token. This is a cumbersome burden which most consumers eschew. If, on the other hand, the user does not effect such redundancies, then losing or damaging their primary personal computing token would be a severe blow. In this instance, or even in the instance where the user loses or damages a computing token with a subset of their information, then months, and perhaps years, of important personal and likely confidential electronic transmissions could be irretrievably lost, or revealed to an untrusted third-party.

In sum, the multitude of such personal computing tokens, whether unconnected desktop terminals or on-line hand held thin clients, has exacerbated the problem of user-reliance on particularly vulnerable, customized memory tokens which can be easily damaged, lost or stolen.

To protect these tokens and the resident electronic transmissions they contain, the use of various biometrics, such as fingerprints, hand prints, voice prints, retinal images, handwriting samples and the like have been suggested for identification of individuals. However, because the biometrics are generally themselves stored in electronic, and thus reproducible, form on the token itself and because the comparison and verification process is not isolated from the hardware and software directly used by the user attempting access, the problems of fraudulent access and of having to constantly carry these tokens is not alleviated. Further, such systems do not adequately isolate the identity verification process from tampering by someone attempting to gain unauthorized access. Examples of this approach to system security are described in U.S. Pat. No. 4,821,118 to Lafreniere; U.S. Pat. No. 4,993,068 to Piosenka et al.; U.S. Pat. No. 4,995,086 to Lilley et al.; U.S. Pat. No. 5,054,089 to Uchida et al.; U.S. Pat. No. 5,095,194 to Barbanell; U.S. Pat. No. 5,109,427 to Yang; U.S. Pat. No. 5,109,428 to Igaki et al.; U.S. Pat. No. 5,144,680 to Kobayashi et al.; U.S. Pat. No. 5,146,102 to Higuchi et al.; U.S. Pat. No. 5,180,901 to Hiramatsu; U.S. Pat. No. 5,210,588 to Lee; U.S. Pat. No. 5,210,797 to Usui et al.; U.S. Pat. No. 5,222,152 to Fishbine et al.; U.S. Pat. No. 5,230,025 to Fishbine et al.; U.S. Pat. No. 5,241,606 to Horie; U.S. Pat. No. 5,265,162 to Bush et al.; U.S. Pat. No. 5,321,242 to Heath, Jr.; U.S. Pat. No. 5,325,442 to Knapp; U.S. Pat. No. 5,351,303 to Willmore, all of which are incorporated herein by reference.

An example of a token-based security system which relies on a biometric of a user can be found in U.S. Pat. No. 5,280,527 to Gullman et al. In Gullman's system, the user must carry and present a credit card sized token (referred to as a biometrics security apparatus) containing a microchip in which is recorded characteristics of the authorized user's voice. In order to initiate the access procedure, the user must insert the token into a terminal such as a public kiosk, and then speak into the terminal to provide a biometrics input for comparison with an authenticated input stored in the microchip of the presented token. The process of identity verification is generally not isolated from potential tampering by one attempting unauthorized access. If a match is found, the remote terminal may then signal the host computer that access should be permitted, or may prompt the user for an additional code, such as a PIN (also stored on the token), before sending the necessary verification signal to the host computer.

Although Gulhman's reliance of comparison of stored and input biometrics potentially reduces the risk of unauthorized access as compared to numeric codes, like personal identification numbers, Gullman's use of the token as the repository for the authenticating data combined with Gullman's failure to isolate the identity verification process from the possibility of tampering greatly diminishes any improvement to fraud resistance resulting from the replacement of a numeric code with a biometrics. Further, the system remains cumbersome and inconvenient to use because it too requires the presentation of a personalized memory token in order to initiate an access request.

Almost uniformly, prior art disclosing biometrics are token-based systems which teach away from biometrics recognition without user-dependence on personalized memory tokens. Reasons cited for such teachings range from storage requirements for biometrics recognition systems to significant time lapses in identification of a large number of individuals, even for the most powerful computers.

In view of the foregoing, there has long been a need for a computerized electronic transmissions system which enables the user to universally access, process and present their electronic transmissions with optimal convenience by not requiring the user to possess any man-made memory tokens on which must be stored the user's customized in order for the user to execute electronic transmissions. Further, there is a need for a tokenless computer system which is highly fraud-resistant, and which is centered around the individual themselves by relying solely upon their unique biometric samples. Such a system should be able to function for the user wherever and whenever the user may be using any generic on-line computing device, whether a desktop or a thin client, for conducting their electronic transmissions.

Further, there is a need for a computing system that provides the user with centralized storage, access, processing and presentation of their electronic transmissions regardless of whether the personal computing device the user is using possesses only a resident subset of their user-customized data or in fact possesses none of their user-customized data at all. Further, there is a need for a computerized electronic transmissions system that provides the user with the above benefits whether or not the personal computing device the user may be using at any given time contains powerful resident memory and processing capacities, or whether it contains virtually no resident memory and processing capacities. Further, there is a need for a computer system which relieves the user from having to redundantly data-enter and update a variety of individual personal computing devices in order to achieve the same customized performance from any or all of such devices.

There is also a need for a computerized electronic transmissions system which relieves the user from having to redundantly data-enter their personal demographics and customized Internet usage activity information into a variety of Internet web sites in order to achieve uniformly customized service at each such web sites. Additionally, there is a need for a computerized electronic transmissions system which enables a user to benefit from executing customized and complex commands governing their electronic transmissions regardless of whether the on-line computing device the user happens to be using is a high-powered desktop terminal or whether it is a hand-held, ultra thin-client terminal with virtually no resident computer processing or memory capabilities of its own.

There is also a need for an electronic transmissions system that uses a strong link to the person being identified, as opposed to merely verifying a user's possession of any physical objects that can be freely transferred.

There is a further need for an electronic transmissions system that ensures user convenience by enabling user-authorization without requiring the user to possess, carry, and present one or more proprietary memory tokens, such as man-made user-customized portable memory devices, in order to effect electronic transmissions. Anyone who has lost a smart card or a traditional notebook personal computer, left it at home, had it damaged or stolen knows well the keenly and immediately-felt inconvenience caused by such problems. Therefore, there is a need for an electronic biometric transmissions system that is entirely tokenless.

There is another need in the industry for a computerized electronic transmissions system that is sufficiently versatile to accommodate both users who desire to use personal identification codes (PICs), being alphabetical, numerical or graphical, for added security and also consumers who prefer not to use them.

Lastly, such a system must be affordable and flexible enough to be operatively compatible with existing networks having a variety of electronic transmission devices and system configurations.

OBJECTIVES OF THE INVENTION

It is an objective of the invention to provide a computerized electronic transmissions system and method that eliminates the need for a user to directly possess any man-made memory token which is encoded or programmed with data personal to or customized for a single authorized user, such as a smart card, magnetic swipe card or even a personal computer with resident user-customized data. Further, it is an objective of the invention to employ a user's biometric sample for ensuring that only authorized users can access and conduct on their own electronic transmissions. It is another object of the invention to be a tokenless technology for ensuring that users have the portability and mobility to gain immediate access to their electronic transmissions via any network-connected interface, regardless of the resident capabilities of the computing device the user is using to interface with the computer network and a central server.

It is another object of this invention, that any client terminal, such as a public computing kiosk without resident user-customized data and without extensive resident software, be automatically and nearly instantly transformed, via a user's biometric log-on using this invention, into a terminal receiving on-line sophisticated computing capabilities that are customized for the user, complete with user-customized electronic transmission accessing, processing and presentation. It is further an object of this invention that the user be able to receive customized presentation of: their own Internet web portal displaying all URLs with which the user has pre-registered for access privileges; personalized recommendations for local activities, events and people that reflect their priorities; their Internet web site preferences, or bookmarks; and their Internet cookies, or that set of data that an Internet website server provides to a user each time the user visits the website. It is further an object of this invention, that a central database save the information the cookies contains about the user, as a text file stored in the Netscape or Explorer system folder, and that this data can be temporarily downloaded this data to whatever client terminal the user is currently logged onto.

It is another object of this invention to provide a computerized electronic transmissions system centered around the user rather than any devices he may possess. In particular, this invention provides an electronic transmission system that is universally accessible to the user because he only needs his biometric to log onto a network, rather than having to rely on his having to possess any man-made memory tokens. In a traditional unit-centric communications model, the unit is any personalized memory token on which is stored user-customized electronic data, or information, that is: a) customized and perhaps even unique to a single user, and; b) required to execute an electronic transmission based on electronic data customized to a particular user's specifications or preferences. As such, the use or presentation of that memory token is a requirement for the user to conduct electronic transmissions which contains content customized, if not unique, to the user's criteria.

In this invention, emphasizing a user-centric communications model, there is no need for any memory token to be required by the user to execute an electronic transmission. This invention employs a user's biometric identification to enable a user to centrally store, access, process and present any customized electronic transmission independent of which computing device the user is using, whether it be a generic public kiosk with no resident information personalized to the user, or a hand held thin client with a minimal subset of data personalized to the user. In this invention, the computing and memory capabilities resident within the user's personal computing device are nearly irrelevant, so long as the device can connect to an on-line network, such as the Internet, and provides the user with basic biometric input, data input and data display means.

Yet another object of this invention is to construct and present for the user, on any biometric input appratus the user may be using, a user-customized gateway to the Internet containing their desired bookmarks, their personalized search engine and their customized web page directory. This is the user's personal Internet web page portal which is a starting point for their electronic transmissions, including electronic mail, Internet web browsing or surfing, and the like.

A further object of this invention is that in all of these electronic transmissions, this invention provides the user the ability, with only a biometric log-on, to automatically enter all restricted or confidential third-party databases throughout the Internet to which the user has pre-authorized access privileges.

It is another object of this invention that once the user has completed their Internet usage of the client terminal for a particular on-line session, all of the data stream from their on-line session, including all new cookies provided by third parties on behalf of the user and all new data on their browsing activity, be batched and forwarded to central database for downloading and storage.

It is another object of the invention to provide a computer system that is capable of verifying a user's identity, as opposed to verifying possession of propriety objects and information. It is yet another object of the invention to verify user identity based on one or more unique biometric characteristics physically personal to the user. Yet another object of the invention is to provide a computer system wherein access is secure, yet designed to be convenient and easy for a consumer to use.

It is yet another object of the invention to further enhance fraud resistance by maintaining authenticating data and carrying out the identity verification operations at a point in the system that is operationally isolated from the user requesting access, thereby preventing the user from acquiring copies of the authenticating data or from tampering with the verification process.

Yet another object of the invention is to provide a user with a central computerized data processing center, containing an electronic identicator and an electronic clearinghouse, for storage, accessing, processing and presenting their biometric and their user-customized electronic transmissions. As such, it is an objective of the invention to enable a user to enter their customized data into a centralized database, such data to include their biometric samples, their demographics, their computer function preferences, and their on-line activity or browsing patterns, and to thereby enable the user to have all such personal data uniformly updated by him and uniformly accessible to him regardless of the computing device the user is using at any one time.

Yet another object of the invention is to enable third-party databases to correctly identify a user using the computer system so that their on-line activity patterns can be linked to that user's personal demographic database. In this way, the third-party can more efficiently deliver services and information to pre-identified or interested users.

Another objective of the invention is that the third-party database be identified by the computer system, wherein the third-party database's identification is verified.

Another objective of the invention is to be added in a simple and cost-effective manner to existing computing terminals currently installed at points of usage and used over the Internet. Yet another objective of the invention is to be efficiently and effectively operative with existing communications systems and protocols, specifically as these systems and protocols linked to the processing of electronic transmissions.

SUMMARY OF THE INVENTION

Herein is described a tokenless biometric method for processing electronic transmissions, using at least one user biometric sample, an electronic identicator and an electronic rule module clearinghouse. The steps for processing of the electronic transmissions comprise of a user registration step, wherein a user registers with an electronic identicator at least one registration biometric sample taken directly from the person of the user. A formation of a rule module customized to the user in a rule module clearinghouse, wherein at least one pattern data of a user is associated with at least one execution command of the user. A user identification step, wherein the electronic identicator compares a bid biometric sample taken directly from the person of the user with at least one previously registered biometric sample for producing either a successful or failed identification of the user. In a command execution step, upon successful identification of the user, at least one previously designated rule module of the user is invoked to execute at least one electronic transmission. The above-mentioned steps are conducted in a manner wherein a biometrically authorized electronic transmission is conducted without the user presenting any personalized man-made memory tokens such as smartcards, or magnetic swipe cards.

Preferably during the command execution step, the electronic rule module clearinghouse communicates with one or more third-party computers, the third party computers having execution modules that can access, process, or display database contents.

Execution commands are comprised of any of the following, accessing stored electronic data customized to the user's rule modules, processing electronic data customized to the user's rule modules, and presentation of electronic data customized to the user's rule modules.

Pattern data comprises of any of the following; a user unique identification code, demographic information, an email address, a financial account, a secondary biometric, internet browsing patterns, a non-financial data repository account, a telephone number, a mailing address, purchasing patterns, data on pre-paid accounts or memberships for products or services, electronic data usage patterns, employee status, job title, data on user behavior patterns, a digital certificate, a network credential, an internet protocol address, a digital signature, an encryption key, an instant messaging address, personal medical records, an electronic audio signature, and an electronic visual signature.

The pattern data for a user is provided for the rule module by any of the following entities, the user, the electronic rule module clearinghouse, or an authorized third party.

The execution command for a user is provided for the rule module by any of the following; the user, the electronic rule module clearinghouse, or an authorized third party.

Preferably a user re-registration check step is used, wherein the user's registration biometric sample is compared against previously registered biometric samples wherein if a match occurs, the computer system is alerted to the fact that the user has attempted to re-register with the electronic identicator.

It is understood that the biometric sample comprises any of the following: a fingerprint, a facial scan, a retinal image, an iris scan, and a voice print.

In a different embodiment of the invention, during the identification step, the user provides a personal identification code to the electronic identicator along with a bid biometric sample for purposes of identifying the user.

In yet another embodiment, a biometric theft resolution step is employed, wherein a user's personal identification code is changed when the user's biometric sample is determined to have been fraudulently duplicated.

In a different embodiment, accessing stored electronic data results in activation of an internet-connected device, such as an exercise device that is connected to the Internet.

In a different embodiment, processing comprising of data includes invoking any of the following; a user's digital certificate, a user's identity scrambler, a user's interactive electronic consumer loyalty or consumer rewards program, a user's interactive electronic advertising, a user's interactive instant messaging program, a user's email authentication, and an automated electronic intelligent agent for electronic data search and retrieval that is customized to the user's requests.

Preferably, the invention comprises a user log-in repeat step, wherein during an electronic transmission the user is periodically required by the electronic identicator to present the user's bid biometric sample or at least one of the user's pattern data.

In another embodiment the method comprises a third-party registration step, wherein a third-party registers identification data with the electronic identicator, the identification data comprising any of the following; a biometric, a digital certificate, an internet protocol address, or a biometric input apparatus hardware identification code. In a third-party identification step, a third-party providing the user with electronic transmissions is identified by the electronic identicator by comparing the third-party's bid identification data with the third-party's registered identification data.

A computer system device for tokenless biometric processing of electronic transmissions, using at least one user biometric sample, an electronic identicator and an electronic rule module clearinghouse, comprises a biometric input apparatus, for providing a bid or registration biometric sample of a user to the electronic identicator; wherein a user registers with an electronic identicator at least one registration biometric sample taken directly from the person of the user; an electronic rule module clearinghouse, having at least one rule module farther comprising at least one pattern data of the user associated with at least one execution command of the user, for executing at least one electronic transmission; an electronic identicator, for comparing the bid biometric sample with registered biometric samples of users; a command execution module, for invoking at least one previously designated execution command in the electronic rule module clearinghouse to execute an electronic transmission; wherein no man-made memory tokens such as smartcards, or magnetic swipe cards are presented by the user to conduct the electronic transmission.

Preferably the command execution module communicates with one or more third-party computers. Pattern data for the device of this invention comprises any of the following; a user unique identification code, demographic information, an email address, a financial account, a secondary biometric, a non-financial data repository account, a telephone number, a mailing address, purchasing patterns, data on pre-paid accounts or memberships for products or services, electronic data usage patterns, employee status, job title, data on user behavior patterns, a digital certificate, a network credential, an internet protocol address, a digital signature, an encryption key, an instant messaging address, personal medical records, an electronic audio signature, and an electronic visual signature. The pattern data for a user is provided for the rule module by any of the following; the user, the electronic rule module clearinghouse, or an authorized third party.

An execution command for a user is provided for the rule module by any of the following; the user, the electronic rule module clearinghouse, or an authorized third party.

In another embodiment of the invention a tokenless biometric method for processing electronic transmissions, using at least one user biometric sample, an electronic identicator and an electronic rule module clearinghouse, said method comprising the steps of a primary and subordinated user registration step, wherein a primary and subordinated user each register with an electronic identicator at least one registration biometric sample taken directly from the person of the primary and subordinated user, respectively. A rule module customized to the primary and subordinated user is formed in a rule module clearinghouse, wherein at least one pattern data of the primary and subordinated user is associated with at least one execution command of the primary and subordinated user. In a subordinated user identification step, wherein the electronic identicator compares a bid biometric sample taken directly from the person of the subordinated user with at least one previously registered biometric sample for producing either a successful or failed identification of the subordinated user. In a subordination step, upon successful identification of the subordinated user, the pattern data of the subordinated user is searched to determine if any of the subordinated user's rule modules is subordinated to at least one of the primary user's rule modules. In a command execution step, upon the successful identification of the subordinated user and the determination that at least one of the subordinated user's rule modules is subordinated to at least one of the primary user's rule modules, at least one previously designated execution command of the primary user is invoked to execute at least one electronic transmission; wherein a biometrically authorized electronic transmission is conducted without the primary and subordinated user presenting any personalized man-made memory tokens such as smartcards, or magnetic swipe cards.

The present invention satisfies several needs by providing a significantly improved system and method for tokenless-accessing, processing and presentation of electronic transmissions requiring only a user biometric.

The present invention is significantly advantageous over the prior art in a number of ways. First, it is extremely easy and efficient for people to use because it eliminates the need for users to directly possess any personalized memory tokens such as magnetic swipe cards or personal computers with resident user-customized data, in order to access, process and present electronic transmissions. The present invention therefore eliminates the inconveniences associated with carrying, safeguarding, and locating such memory laden tokens. The user is now uniquely empowered, by means of this invention, to conveniently conduct their electronic transmissions at any time and from virtually anywhere without dependence upon any tokens which may be stolen, lost or damaged.

The invention is clearly advantageous from a convenience standpoint by making electronic transmissions less cumbersome and more spontaneous.

Further, the substantial manufacturing and distributing costs of issuing and reissuing user-customized tokens such as magnetic swipe cards, and smart cards, or even powerful desktop personal computers, thereby providing further economic savings to users and companies.

Further, the present invention even eliminates the traditional requirement for a user to directly possess and use the ultimate memory token, a desktop personal computer with resident user-customized data.

Further, the present invention is also clearly advantageous from a convenience standpoint of users by providing centralized database tracking and storage of user-customized demographics, preferences and on-line activity or browsing patterns, thereby making electronic transmissions significantly more accurately and more precisely user-customized.

Moreover, the invention is markedly advantageous and superior to existing systems in being highly fraud resistant. The present invention virtually eliminates the risk of granting access to unauthorized users by determining identity from an analysis of a user's unique biometric characteristics. The invention further enhances fraud resistance by maintaining authenticating data and carrying out the identity verification operations at a point in the system that is operationally isolated from the user requesting access, thereby preventing an unauthorized user from acquiring copies of the authenticating data or from tampering with the verification process. Such a system is clearly superior to existing token-based systems wherein authenticating information, such as biometrics or personal codes, is stored on and can be recovered from the token, and wherein the actual identity determination is potentially in operational contact with the user during the access process.

Further, the invention can be cost-effectively integrated with existing electronic transmission systems currently installed in corporate intranets and over the Internet.

These and other advantages of the invention will become more fully apparent when the following detailed description of the invention is read in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a preferred embodiment of the invention having a biometric input apparatus that is connected a data processing center (DPC) through an Internet or intranet. The data processing center has an electronic identicator and a rule module clearinghouse.

FIG. 2 is a flow chart of the process of submitting a biometric sample to the DPC until an execution command of the identified user is executed by the Execution Module.

PatentSwarm provides a collaborative workspace to search, highlight, annotate, and monitor patent data.

Start free trial Sign in